
Lecture 11

Property of MGF

If
MX(t) = MY (t),

then X and Y are identically distributed.

Basic Properties

1. MX(0) = 1

2. For a linear transformation Y = aX + b:

MaX+b(t) = E[et(aX+b)] = ebtMX(at).

Characteristic Function (CF)

The characteristic function of a random variable X is defined as

φX(t) = E[eitX ] = MX(it) (if MGF exists).

• Characteristic function always exists.
• |φX(t)| ≤ 1.

φX(t) =

∫ ∞

−∞
eitxf(x) dx

From inversion,

f(x) =
1

2π

∫ ∞

−∞
e−itxφX(t) dt

For X ∼ Exp(1),

MX(t) =
1

1− t
, t < 1.

Thus,

φX(t) = MX(it) =
1

1− it
.

This CF can be inverted to recover the pdf of the exponential random variable.

We had earlier:

f(x) =
1

2π

∫ ∞

−∞

1

1− it
e−ixt dt
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Moment Inequalities

Result 1 (Markov’s Inequality)

Let X be a continuous random variable with pdf fX(x). Let h(x) be a non-negative function.
Then,

P (h(X) ≥ ε) ≤ E[h(X)]

ε
, ε > 0.

Example:

Suppose the salary of people is a random variable X, but the exact distribution is unknown.
If the average salary is given as E[X], then

P (Salary ≥ 50, 000) ≤ E[X]

50, 000
.

Proof

E[h(X)] =

∫ ∞

−∞
h(x)f(x) dx

Split into two parts:

E[h(X)] =

∫
h(x)≥ε

h(x)f(x) dx+

∫
h(x)<ε

h(x)f(x) dx

Note that the second integral is always non-negative, and for the first integral, since h(x) ≥ ε,∫
h(x)≥ε

h(x)f(x) dx ≥ ε P (h(X) ≥ ε).

Thus,
E[h(X)] ≥ ε P (h(X) ≥ ε).

=⇒ P (h(X) ≥ ε) ≤ E[h(X)]

ε
.

This proves Markov’s Inequality.

We know:

E[h(X)] ≥
∫
h(x)≥ε

h(x)f(x) dx

Since h(x) ≥ ε on this domain,

E[h(X)] ≥ ε

∫
h(x)≥ε

f(x) dx
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=⇒ E[h(X)] ≥ ε P (h(X) ≥ ε).

Thus,

P (h(X) ≥ ε) ≤ E[h(X)]

ε
.

Equivalently,

P (h(X) < ε) ≥ 1− E[h(X)]

ε
.

Application

Markov’s Inequality provides a fundamental tool for bounding probabilities. It is the basis
for deriving further inequalities, such as Chebyshev’s Inequality.

Markov Inequality:

If we take
h(X) = |X|r, r > 0,

then for any ε > 0:

P (|X|r ≥ εr) ≤ E[|X|r]
εr

.

Equivalently,

P (|X| ≥ ε) ≤ E[|X|r]
εr

.

This is the general form of Markov’s Inequality.

We start with the general inequality:

Pr
(
|X| ≥ ε

)
≤

E
(
|X|r

)
εr

, for r > 0.

This can also be written as:

Pr
(
|X| ≥ ε

)
≤ E (|X|r)

εr
.

Remark: This shows that if we know any moment of X, then we can bound its tail proba-
bility. It is not necessary to only use the first moment.
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Chebyshev’s Inequality

Suppose X is a random variable with expectation E(X) = µ and variance Var(X) = σ2.

We choose the function h(X) = (X − µ)2. Then, for any k > 0,

Pr
(
(X − µ)2 ≥ k2σ2

)
≤

E
(
(X − µ)2

)
k2σ2

=
σ2

k2σ2
=

1

k2
.

Hence,

Pr
(
|X − µ| ≥ kσ

)
≤ 1

k2
.

Equivalently,

Pr
(
|X − µ| < kσ

)
≥ 1− 1

k2
.

For k = 2,

Pr
(
|X − µ| < 2σ

)
≥ 1− 1

4
=

3

4
.
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