Lecture 2

2.8 Probability Function

Definition 4. A probability function is a mapping:

$$P: \mathcal{F} \to [0,1]$$

used to quantify uncertainty in experiments.

Example 3. Analyzing data of students in IITJ:

- Heights
- Weights
- ullet Health center visits
- Academic perceptions

Each variable exhibits different levels of uncertainty. For example, in height analysis:

 $Minimum\ height = 3\ ft, \quad Maximum\ height = 7\ ft$

We can use bar charts or histograms to understand the uncertainty.

2.9 Axioms of Probability

Let S be the **sample space**. Then $P: F \to [0,1]$ be such that

- 1. P(S) = 1
- 2. If $A_1, A_2, \dots \subset S$ are such that $A_i \cap A_j = \emptyset$ for $i \neq j$, then:

$$P\left(\bigcup_{i} A_{i}\right) = \sum_{i} P(A_{i})$$

5

2.10 Properties of the Power Set

For the **power set** $\mathcal{P}(S)$:

- 1. $\varnothing \in \mathcal{P}(S)$
- 2. $S \in \mathcal{P}(S)$
- 3. If $A \in \mathcal{P}(S)$, then $A^c \in \mathcal{P}(S)$
- 4. If $A, B \in \mathcal{P}(S)$, then $A \cup B \in \mathcal{P}(S)$ and $A \cap B \in \mathcal{P}(S)$

2.11 Sigma Algebra

Definition 5. A sigma algebra \mathcal{F} is a set of subsets of S such that:

- 1. $\varnothing \in \mathcal{F}$
- 2. If $A \in \mathcal{F}$, then $A^c \in \mathcal{F}$
- 3. If $A, B \in \mathcal{F}$, then $A \cup B \in \mathcal{F}$

Remark 2 (De Morgan's Law). Union and complement closure imply intersection closure:

$$A \cap B = (A^c \cup B^c)^c \in \mathcal{F}$$

Proposition 1. The power set $\mathcal{P}(S)$ is maximal sigma algebra.

Example 4. $S = \{1, 2, ..., 6\}$, throwing a die. Let $A = \{1, 3, 5\}$. Define $\mathcal{F} = \{\emptyset, S, A, A^c\}$.

Example 5. $S = \{1, 2, 3, 4, 5, 6\}, A = \{2, 4, 6\}, B = \{3, 6\}.$ Find the smallest sigma algebra \mathcal{F} containing A and B.

Example 6. $\mathcal{F} = \{\emptyset, S\}$ is the minimal sigma algebra.

2.12 Properties of Probability Functions

- 1. $P(A^c) = 1 P(A)$
- 2. P(S) = 1
- 3. $P(A \cup A^c) = 1 \implies P(\emptyset) = 0 \text{ if } A = S$

2.13 Set Operations in Probability

Using union, intersection, and complement:

$$A \cup B$$
: "A or B", $A \cap B$: "A and B", A^c : "not A"

If $A \cap B = \emptyset$, then A and B are mutually exclusive.

If $A \cap B \neq \emptyset$, then they are **not mutually exclusive** and:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Proof. Write $A = (A \cap B) \cup (A \cap B^c)$ and $B = (B \cap A) \cup (B \cap A^c)$. Adding:

$$P(A) + P(B) = P(A \cap B) + P(A \cap B^c) + P(B \cap A) + P(B \cap A^c)$$

Simplifying gives the required formula.

Theorem 1. For three events:

$$P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(B \cap C) - P(C \cap A) + P(A \cap B \cap C)$$

2.14 Independence and Conditional Probability

If A and B are independent:

$$P(A \cap B) = P(A)P(B)$$

If dependent:

$$P(A \cap B) = P(A)P(B|A)$$

where P(B|A) is the **conditional probability** of B given A.

• The process of conditioning reduces the sample space. For example, searching for a student in IITJ given that the student is in the Lecture Hall Complex (LHC).