Lecture 3

2.15 Events and Joint Occurrence

Let $A \subset S$ (sample space). The joint occurrence of events A and B is given by $A \cap B$.

If independent: $P(A \cap B) = P(A)P(B)$

If dependent: $P(A \cap B) = P(A)P(B|A)$

2.16 Conditional Probability

If B has occurred first and then A occurs:

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

where:

 $P(A) = \text{Probability of } A, \quad P(A|B) = \text{Probability of } A \text{ given } B.$

Example 7. A new student in IITJ is finding a class. The probability:

 $P(Finding\ class \mid Right-hand\ side) = \dots$

Given more and more information, uncertainty reduces. The process of updating information is called **conditioning**.

2.17 Multiplication Rule

$$P(A \cap B) = P(B)P(A|B)$$

As A occurs first, the **updation rule** increases in relevance.

2.18 Axioms for Conditional Probability

Check if P(A|B) satisfies probability axioms:

- 1. P(S|B) = 1
- 2. If A_1 and A_2 are mutually exclusive then $P(A_1 \cup A_2 \mid B) = P(A_1 \mid B) + P(A_2 \mid B)$

Thus, conditional probability satisfies all the axioms of probability.

2.19 Law of Total Probability

If B_1, B_2, \ldots, B_n is a partition of S, then for any $A \subset S$:

$$P(A) = \sum_{i} P(A|B_i)P(B_i)$$

The partition of S mean $S = \bigcup B_i$ and $B_i \cap B_j = \phi$, for all $i \neq j$.

Example 8. Searching for a student in IITJ: partition IITJ into subsets like hostel, mess, etc., and search in each section separately.

Example 9 (Factory with 3 Units). Three production units:

- Unit 1: 50% capacity, 5% defective
- Unit 2: 30% capacity, 3% defective
- Unit 3: 20% capacity, 1% defective

The probability that a product is defective:

$$P(D) = P(D|1)P(1) + P(D|2)P(2) + P(D|3)P(3)$$

Example 10 (Binary Communication Channel). The channel receives 0 and 1 with probabilities 60% and 40% respectively. Correct transmission rates: 95% for 0, 90% for 1.

$\overline{Transmitted}$	Received	Probability
0	0	0.95
0	1	0.05
1	0	0.10
1	1	0.90

We can compute:

 $P(0 \ received) = P(0 \ received \mid 0 \ transmitted)P(0) + P(0 \ received \mid 1 \ transmitted)P(1)$

This approach can be extended to n sequential occurrences.

2.20 Bayes' Theorem

If an item is found defective, we can ask: "Where did it come from?" — the place of maximum likely.

$$P(I|D) = \frac{P(I \cap D)}{P(D)} = \frac{P(D|I)P(I)}{\sum_{i} P(D|I_i)P(I_i)}$$

Theorem 2 (Bayes' Theorem).

$$P(A \cap B) = P(A)P(B|A) = P(B)P(A|B)$$

which implies:

$$P(A|B) = \frac{P(A)P(B|A)}{P(B)}$$