Lecture 7

Example

$$f(x) = \begin{cases} x, & 0 < x < 1, \\ kx^3, & 1 \le x \le 2, \\ 0, & \text{otherwise.} \end{cases}$$

Solution: Using the definition of PDF, we have

$$\int_{-\infty}^{\infty} f(x)dx = 1$$
$$\int_{0}^{1} xdx + \int_{1}^{2} kx^{3}dx = 1 \Longrightarrow k = \frac{2}{15}$$

Now CDF is

$$F_X(x) = \begin{cases} 0, & x < 0, \\ \frac{x^2}{2}, & 0 \le x \le 1, \\ \frac{1}{2} + \frac{1}{30}(x^4 - 1), & 1 \le x \le 2, \\ 1, & \text{otherwise.} \end{cases}$$

Functions of Random Variables

Let X has probability distribution

$$X:0 1 2 3 P_X: \frac{1}{8} \frac{3}{8} \frac{3}{8} \frac{1}{8}$$

What is the probability distribution of Y = g(X)?. Let $Y = X^2$

$$Y:0$$
 1 4 9 $P_Y:\frac{1}{8}$ $\frac{3}{8}$ $\frac{3}{8}$ $\frac{1}{8}$

Consider the following distribution

$$X:-1 \qquad 1 \qquad 1$$

$$P_X:\frac{1}{3} \qquad \frac{1}{3} \qquad \frac{1}{3}$$

Let
$$Y = X^2$$

$$Y:0 \qquad 1$$
$$P_Y:\frac{1}{3} \qquad \frac{2}{3}$$

Let X be a Continuous Random Variables with probability density function $f_X(x)$ then what is the pdf of Y = g(X)?

$$F_Y(y) = P(Y \le y) = P(g(X) \le y).$$

Can we convert it into known distribution $f_X(x)$?

$$F_Y(y) = P(X \le g^{-1}(y))$$
 (is g invertible?)
= $F_X(g^{-1}(y))$.

$$f_Y(y) = \frac{d}{dy} F_Y(y).$$

Since $F_Y(y) = F_X(g^{-1}(y))$, we have

$$f_Y(y) = f_X(g^{-1}(y)) \cdot \frac{d}{dy}(g^{-1}(y))$$
 (is g differentiable?)

Example

$$f_X(x) = \begin{cases} \frac{1}{2}, & 0 < x < 2, \\ 0, & otherwise. \end{cases}$$

Let $Y = X^2$, find $f_Y(y)$?.

Solution:

$$F_Y(y) = P(Y \le y)$$

$$= P(X^2 \le y)$$

$$= P(X \le \sqrt{Y}).$$

Here $F_Y(y) = F_X(\sqrt{Y})$. Now, we get

$$f_Y(y) = \frac{d}{dY} F_X(\sqrt{Y})$$

$$= f_X(\sqrt{y}) \cdot \frac{1}{2\sqrt{Y}}$$

$$= \frac{1}{4\sqrt{Y}}, \quad 0 < y < 4.$$

Theorem 3. Let X be a continuous random variable with probability density function $f_X(x)$ and Y = g(X) be a monotonic and differentiable function. Then the probability density function of Y is given by

$$f_Y(y) = f_X(g^{-1}(y)) \left| \frac{d}{dy} g^{-1}(y) \right|, \quad y \in \mathbb{R}.$$

Proof. Since g(X) is one-to-one and continuous, it is either strictly monotonically increasing or decreasing. Assume that it is strictly monotonic increasing. The cdf of Y is given by

$$F_Y(y) = P(Y \le y) = P(g(X) \le y) = P(X \le g^{-1}(y)) = F_X(g^{-1}(y)).$$

Hence, the pdf of Y is

$$f_Y(y) = \frac{d}{dy} F_Y(y) = f_X(g^{-1}(y)) \cdot \frac{d}{dy} (g^{-1}(y)).$$

In this case, because g is increasing, $\frac{d}{dy}(g^{-1}(y) > 0$. Hence we can write $\frac{d}{dy}(g^{-1}(y) = |\frac{d}{dy}(g^{-1}(y))|$.

Suppose g is strictly decreasing function. Then

$$F_Y(y) = P(X \ge g^{-1}(y)) = 1 - F_X(g^{-1}(y)).$$

Hence, the pdf of Y is

$$f_Y(y) = \frac{d}{dy} F_Y(y) = f_X(g^{-1}(y)) \cdot -\frac{d}{dy} (g^{-1}(y)).$$

But since g is decreasing $\frac{d}{dy}(g^{-1}(y) < 0$ and, hence $-\frac{d}{dy}(g^{-1}(y)) = |\frac{d}{dy}(g^{-1}(y))|$. Thus, it is true for both cases.

Example

We consider $f_X(x) = \frac{1}{2}$, 0 < x < 2 and $Y = e^X$, then find $f_Y(y)$?.

Solution: Since the function $Y=e^X$ is increasing function in given domain so by using theorem 3, we get

$$f_Y(y) = f_X(g^{-1}(y)) \cdot \frac{d}{dy}(g^{-1}(y)) = f_X(\ln y) \cdot \frac{1}{y} = \frac{1}{2y}, \quad 1 < y < e^2.$$