Lecture 9

Expectation of a random variable

Definition 6. Let X be a random variable. If X is a discrete random variable with pmf p(x) and

$$\sum_{x} |x| p(x) < \infty,$$

then the **expectation** of X is

$$E(X) = \sum_{x} x p(x).$$

If X is a continuous random variable with pdf f(x) and

$$\int_{-\infty}^{\infty} |x| f(x) dx < \infty,$$

then the **expectation** of X is

$$E(X) = \int_{-\infty}^{\infty} x f(x) dx.$$

Example

1. Let the random variable X of the discrete type have the pmf given by

$$X:0$$
 1 2 3 $P_X:\frac{1}{8}$ $\frac{3}{8}$ $\frac{3}{8}$ $\frac{1}{8}$

we have

$$E(X) = (0 \times \frac{1}{8}) + (1 \times \frac{3}{8}) + (2 \times \frac{3}{8}) + (3 \times \frac{1}{8}) = \frac{3}{2}.$$

2. Let the random variable X of the continuous type have the pdf given by

$$f(x) = 3x^2, \qquad 0 < x < 1.$$

Then

$$E(X) = \int_0^1 x \cdot 3x^2 dx = \frac{3}{4}.$$

Definition 7. Suppose X is a continuous random variable with pdf $f_X(x)$ and let Y = g(X) for some function g. If $\int_{-\infty}^{\infty} |g(x)| f_X(x) dx < \infty$, then the expectation of Y exists and it is given by

$$E(g(X)) = \int_{-\infty}^{\infty} g(x) f_X(x) dx.$$

• Case:1 If $g(X) = X^r$, then r^{th} moment about the origin is

$$E(X^r) = \sum_{i=1}^n x_i^r p_i,$$
 (for discrete random variable)

$$E(X^r) = \int_{-\infty}^{\infty} x^r f(x) dx$$
, (for continuous random variable)

• Case:2 If $g(X) = (X - a)^r$, then r^{th} moment about the point a is

$$E[(X-a)^r] = \sum_{i=1}^n (x_i - a)^r p_i, \quad \text{(for discrete random variable)}$$

$$E(X^r) = \int_{-\infty}^{\infty} (x - a)^r f(x) dx$$
, (for continuous random variable)

Note: If r = 1, then it represents mean.

• Case:3 Second moment about mean

$$E[(X - E(X))^{2}] = \sum_{i=1}^{n} [x_{i} - E(X)]^{2} p_{i}.$$

Let $E(X) = \mu$ =mean, then we have

$$E[(X - E(X))^{2}] = \sum_{i=1}^{n} [x_{i} - \mu]^{2} p_{i}.$$

or

$$E[(X - E(X))^2] = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx.$$

Variance

The variance (measure of randomness) of X is defined to be $E[(X - E(X))^2]$. It is denoted by σ^2 or by Var(X).

$$Var(X) = E[(X - E(X))^{2}] = E[(X^{2} - 2E(X)X + (E(X))^{2})];$$

since E is a linear operator,

$$Var(X) = E(X^{2}) - 2(E(X))^{2} + (E(X))^{2}$$

So,

$$Var(X) = E(X^2) - (E(X))^2.$$

Note: $Var(X) \ge 0$.

Example

$$X:-1 \quad 0 \quad 1$$

 $P_X:\frac{1}{3} \quad \frac{1}{3} \quad \frac{1}{3}.$

By solving this E(X) = 0 and $E(X^2) = \frac{2}{3}$. Therefore

$$Var(X) = \sigma^2 = \frac{2}{3}.$$

Standard Deviation

$$\sigma = \sqrt{\operatorname{Var}(X)}.$$

Convex Function

A function $h: \mathbb{R} \to \mathbb{R}$ is said to be **convex** on an interval $I \subseteq \mathbb{R}$ if

$$h(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y),$$

for all $x, y \in I$ and $\lambda \in [0, 1]$.

Jensen's Inequality

Let $h: \mathbb{R} \to \mathbb{R}$ be a convex function, and let X be a random variable. Then

$$h(E(X)) \le E(h(X)).$$

Note: In general,

$$h(E(X)) \neq E(h(X)).$$

Examples:

$$E(e^X) \neq e^{E(X)}, \quad E\left[\frac{1}{X}\right] \neq \frac{1}{E(X)}.$$